Overview
The WEPP online GIS interface uses the OpenLayers (http://openlayers.org/) software to assist in setting up WEPP watershed simulations. The TOPAZ model (http://ars.usda.gov/Main/docs.htm?docid=21167) is used to determine the channel network, delineate the watershed and determine the flowpaths within the watershed. To translate the GIS data into WEPP inputs, custom software is used. The model outputs show soil loss and runoff from watershed.

Overview ... 1
1. Select your area of interest ... 1
2. Build the Channel Network ... 3
3. Set the watershed outlet point 5
4. Build Subcatchments .. 5
5. Review and edit watershed, channel, representative hillslope, land use, and soil properties 8
6. Set Up WEPP Model Runs .. 13
7. Run WEPP and View Output 15
8. (Optional) Change subcatchment, channel, or impoundment properties ... 22
9. Saving a WEPP Watershed Run 28
10. Loading a Saved Watershed Project 29
11. Download WEPP project for other uses 32

1. Select your area of interest

The first step is to zoom to an area of interest. There are several ways to navigate:
a) Type in a zip code or the nearest city and state to where your watershed is located.
b) Draw an area by holding down the SHIFT key and dragging the mouse with the left button held down.
c) Use the zoom level bar on the left to zoom in/out from the current location, or the arrows at the top left to pan. Holding the left mouse button down can also be used to pan.
The layers available on the map can be seen by clicking the + sign towards the upper right of the map to display the layer switcher. The Google Physical, Streets, Hybrid, or Satellite images can be used as a base layer. GIS layers that can be used as overlays include USGS 2001 land use, topographic maps, SSURGO soils, or impervious areas from USGS. In the image below the PRISM gridded precipitation data is shown. The NRCS SSURGO soils data is very detailed and is only shown when zoomed in at one of the higher zoom levels.

To proceed to the next step, you need to zoom in to an area less than 0.2 degrees from east to west. In the central U.S., this is about 12 miles. If the zoom bar on the left is at the first, second or third bar from the top this would be a small enough area.

Physical: zoom level 3
Street, satellite, hybrid: zoom level 7
2. Build the Channel Network

After zooming to the area of interest click the **Build Channel Network** button. This will run the TOPAZ software, using elevation values from the National Elevation Data layer (USGS, 200x). Two parameters define the amount of detail in the channel network:

- **Minimum Source Channel Length** – the shortest channel length that can support other channels. Increasing the value will generate fewer channels in the watershed. (meters)
 (The minimum length for source channels (channels without tributaries).)

- **Critical Source Area** - the minimum upstream drainage area at which a channel is initiated. Increasing the value will cause fewer channels to be delineated.

Unless you have a basis for selecting these, a good strategy is to use the default setting to define an initial channel network. If the resulting channel network does not match the topography, or creates too many or too few subcatchments in step 4, adjust these parameters and rebuild the channel network.
When the TOPAZ model is running to define the channels information will be sent to browser. When the simulation is complete click on the View Channel Network button.
3. Set the watershed outlet point

In this step, you have the opportunity to select the outlet of the watershed you are modeling. This point should lie on one of the channels that were delineated. Select **Set Outlet Point** then click on a channel cell.

4. Build Subcatchments

After setting the watershed outlet point on a channel the **Build Subcatchments** button is available. This delineates the watershed draining into the selected outlet. It also divides the watershed into a number of subcatchments, determined by the channel network that was built in Step 2.

As the TOPAZ model is running to determine the watershed boundary, subcatchment and flowpath information will be sent to the browser. In addition, the online SSURGO database is queried to determine the different soils in the watershed.
When the processing is complete click on the **View Watershed Subcatchments** button to return to the map window.

After the watershed has been defined the outlet and subcatchment layers will be shown in the map window. Each different colored subcatchment will be used as WEPP hilllslope in a watershed simulation.
In addition, all the flowpaths within the watershed will be simulated with WEPP to estimate spatial soil loss.

Critical source area = 10 ha

Critical source area = 3 ha
5. Review and edit watershed, channel, representative hillslope, land use, and soil properties

After building the subcatchments click on the **Review Watershed Summary** button. The button is only available after the subcatchments have been defined.
The first section of the page gives some general information about the watershed. The next section lists the channels defined within the watershed. Impoundments may be added to the ends of channels.

The next section shows the representative hillslopes. Each WEPP representative hillslope is the area defined by a subcatchment within TOPAZ. Within each representative hillslope there are many flowpaths. Each of the flowpaths slope data are combined to arrive at a single representative hillslope profile that is used in WEPP watershed runs.

The major soils and landuses are determined by looking at the landuse grid and SSURGO soil grid over the subcatchment area. When a WEPP watershed simulation is run the dominate landuse and soil on each representative hillslope is used.
The landuse and soils summary that follow show all the landuse classes present and soil types. This information is used in detailed WEPP flowpath simulations.

The last section of the watershed review summary lists the WEPP soil files that were generated from the SSURGO data.
After reviewing the watershed for the first time there are some links available to make changes. These include:

Change Properties of Hillslopes – For a representative hillslope override the default settings and select a new dominant land use or soil. The hillslope to change is selected by clicking the area on the map.

Change Properties of Channel – Select a different channel parameter set or change the width. The channel is selected by clicking the area on the map.

- **Type**: Choices are ditch, Graded, Ungraded, Waterway, Earth Channel, Gravel Channel, Ditch in forest, Forest road ditch, Waterway through channel

Add/Change Impoundment at end of channel – WEPP watershed impoundments can be placed in the watershed only at the ends of channels. These structures will be used in the WEPP watershed simulation but not in the flowpath runs.
When the impoundment is added it will be indicated in the Review Watershed window:

Channel Summary

<table>
<thead>
<tr>
<th>ID</th>
<th>Order</th>
<th>Name</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Upstream Drainage Area (ha)</th>
<th>Impoundment</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>404.7</td>
<td>1.0</td>
<td>8.46</td>
<td>filter fence</td>
</tr>
<tr>
<td>114</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>332.3</td>
<td>1.0</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>632.1</td>
<td>1.0</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>84.9</td>
<td>1.0</td>
<td>4.86</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>144.9</td>
<td>1.0</td>
<td>4.23</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>OnEarth (Earth Channel)</td>
<td>217.2</td>
<td>1.0</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>2</td>
<td>OnEarth (Earth Channel)</td>
<td>327.2</td>
<td>2.0</td>
<td>30.15</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>2</td>
<td>OnEarth (Earth Channel)</td>
<td>312.3</td>
<td>2.0</td>
<td>40.86</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>OnEarth (Earth Channel)</td>
<td>277.2</td>
<td>2.0</td>
<td>59.13</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>OnEarth (Earth Channel)</td>
<td>60.0</td>
<td>2.0</td>
<td>67.95</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>OnGravel (Gravel Channel)</td>
<td>621.9</td>
<td>2.0</td>
<td>109.8</td>
<td>filter fence</td>
</tr>
</tbody>
</table>

Remove All Impoundments – Removes any added impoundments.

Finished Removing Impoundments

All impoundments in the watershed have been removed.

Click the Review Watershed link below to update the any files before running WEPP.

Review Watershed
6. Set Up WEPP Model Runs

Click on the **Setup WEPP Model** button to proceed to run WEPP with the defined watershed. Once this button is clicked the general watershed structure (size, number of channels, representative hillslopes, flowpaths) defined by TOPAZ is finalized and cannot be changed. Landuse and soils inside the watershed can still be changed between WEPP, just not the overall watershed structure.
Below the map window some fields are displayed that can be used to customize a WEPP run. The following are the fields:

Climate Station – The nearest CLIGEN station to the watershed outlet.

Default Soil – If the soil grid is not used this defines the soil that is used for the whole watershed.

Default Landuse – If the landuse grid is not used this defines the landuse that is used for the whole watershed.

Simulation Type – Can be both Watershed and Flowpaths. This will run a WEPP watershed simulation using the representative hillslopes and also run WEPP simulations for each of the flowpaths in the watershed. This may result in hundreds or thousands of WEPP runs. To get the detail cell by cell soil loss results the flowpaths simulations must be run.

Years to Simulate – How long the WEPP simulations are, 1 to 10 years. This is limited by computer processing power on the several, to do much longer runs use the desktop versions of the software.

Soil Loss Tolerance – This defines how the output soil loss maps colors will be set in. Shades of red are soil loss values greater than T while shades of green are soil loss values below T.

Climate Generator – This defines the CLIGEN program version to use when producing the synthetic climate data. Version 5.2

Adjust for PRISM – The PRISM climate data (http://www.prism.oregonstate.edu/) can be used to adjust the CLIGEN station data values for precipitation, minimum and maximum temperature. This is useful in areas where the CLIGEN station is quite a distance from the watershed or there is a significant elevation difference.

Land use Processing Options – Use either landuse layer or manually set landuse.

Soil Processing Options - Use either soil layer or manually set landuse.
7. Run WEPP and View Output
When the WEPP simulation starts a window will be displayed while the model is running indicating the simulation time. The number of years to run, size of the watershed and number of different land uses along with any freeze thaw winter processes influence how long the simulation will take to finish.
After the WEPP run completes the following window will be displayed. Click the ‘View Erosion Maps’ button to return to the map window to see the results displayed on the map and also in report form.

WEPP Runs are done. Click the button below to view the results.

View Erosion Maps

00:10

Status Output from WEPP Runs

Starting prepwepp version Oct 10 2012
In loadCommands
#In loadCommands#
workingDir = "/home/wepp/1a56e2b2c997f673f7ce5f4e62846"
work = "/home/wepp"
climate = "/home/wepp/1a56e2b2c997f673f7ce5f4e62846/runs/wepp.clt"
management = "/home/wepp/data/management/399003.aio"
poll = "/home/wepp/1a56e2b2c997f673f7ce5f4e62846/runs/wepp.poll"
channel = "BIOCH"
channels=Min = 3
years = 1
SedimentGrid
SedimentGrid
Unknown command: SedimentGrid
Watershed Summary (watershed method, off-site assessment)

<table>
<thead>
<tr>
<th>Hillside IDs</th>
<th>Landuse</th>
<th>Soil</th>
<th>Runoff Volume</th>
<th>Soil Loss</th>
<th>Sediment Yield</th>
<th>Area</th>
<th>Mapped Soil Loss</th>
<th>Sediment Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>Cultivated Crops</td>
<td>3511.1</td>
<td>31.9</td>
<td>31.9</td>
<td>11.5</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>Cultivated Crops</td>
<td>2085.3</td>
<td>11.1</td>
<td>11.1</td>
<td>14.1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>Evergreen Forest</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>Cultivated Crops</td>
<td>1112.7</td>
<td>5.8</td>
<td>5.8</td>
<td>6.3</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>Cultivated Crops</td>
<td>894.4</td>
<td>5.3</td>
<td>5.3</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>Cultivated Crops</td>
<td>788.1</td>
<td>5.6</td>
<td>5.6</td>
<td>1.3</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>Cultivated Crops</td>
<td>520.2</td>
<td>3.2</td>
<td>3.1</td>
<td>3.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>Evergreen Forest</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>Mixed Forest</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
<td>Cultivated Crops</td>
<td>709.4</td>
<td>5.7</td>
<td>5.7</td>
<td>1.3</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Channel Summary (watershed method, off-site assessment)

<table>
<thead>
<tr>
<th>Channel IDs</th>
<th>Discharge Volume</th>
<th>Sediment Yield</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104</td>
<td>n.a.</td>
<td>3</td>
<td>507</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>n.a.</td>
<td>3.2</td>
<td>217.3</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>n.a.</td>
<td>5.5</td>
<td>432.1</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>n.a.</td>
<td>5.3</td>
<td>174.9</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>n.a.</td>
<td>4.2</td>
<td>289.7</td>
</tr>
<tr>
<td>8</td>
<td>84</td>
<td>n.a.</td>
<td>3</td>
<td>297</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>n.a.</td>
<td>3.4</td>
<td>312.4</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>n.a.</td>
<td>6.5</td>
<td>337.3</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>20169.4</td>
<td>51.7</td>
<td></td>
</tr>
</tbody>
</table>

Impoundment Summary (watershed method, off-site assessment)

<table>
<thead>
<tr>
<th>Impoundment IDs</th>
<th>Discharge Volume</th>
<th>Sediment Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m³/yr)</td>
<td>(tonne/year)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitslope IDs</td>
<td>Topaz</td>
<td>Runoff Volume</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>984.8</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>924.8</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>115.5</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>126.9</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>159.8</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>106.5</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>525.4</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>103.3</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>44.9</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
<td>110.9</td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td>37.4</td>
</tr>
<tr>
<td>12</td>
<td>61</td>
<td>202</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>1343</td>
</tr>
<tr>
<td>14</td>
<td>71</td>
<td>664.1</td>
</tr>
<tr>
<td>15</td>
<td>72</td>
<td>870</td>
</tr>
<tr>
<td>16</td>
<td>83</td>
<td>568</td>
</tr>
<tr>
<td>17</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>18</td>
<td>93</td>
<td>126.8</td>
</tr>
<tr>
<td>19</td>
<td>91</td>
<td>570.8</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>276.9</td>
</tr>
<tr>
<td>21</td>
<td>101</td>
<td>385.8</td>
</tr>
<tr>
<td>22</td>
<td>103</td>
<td>792.7</td>
</tr>
<tr>
<td>23</td>
<td>102</td>
<td>84.8</td>
</tr>
</tbody>
</table>

The last section shows the flowpath results, which combine all the flowpaths within each subcatchment.
WEPP Watershed
Online GIS Interface
January 2011

Yearly average watershed values/Abbreviated

USDA WATER EROSION PREDICTION PROJECT
HILLSLOPE PROFILE AND WATERSHED MODEL
VERSION 2010.100
January 28, 2010

TO REPORT PROBLEMS OR TO BE PUT ON THE MAILING
LIST FOR FUTURE WEPP MODEL RELEASES, PLEASE CONTACT:

WEPP TECHNICAL SUPPORT
USDA-AGRICULTURAL RESEARCH SERVICE
NATIONAL SOIL EROSION RESEARCH LABORATORY
275 SOUTH BURRILL STREET
WEST LAFAYETTE, IN 47907-2077 USA

PHONE: (765) 494-8673
FAX: (765) 494-3945
email: wepp@ecn.purdue.edu
URL: https://topsoil.nserl.purdue.edu

WATERSHED INPUT DATA FILES - VERSION 2010.100
January 28, 2010

WATERSHED PASS: ../output/gw0.out
HILL: p0.shp
WAT. CHANNEL: p0.chan
IMPOUNDMENT: p0.imp
MANAGEMENT: p0.man
MAN. PRACTICE: description 3
description 2
description 3
SLOPE: p0.slp
CLIMATE: p0.clm
Station: TIFTON 2 N GA
SOIL: p0.soil
CHANNEL 1 Kinison
CHANNEL 2 Rothen 1

Distribution of Primary Particles and
Organic Matter in the Eroded Sediment:

<table>
<thead>
<tr>
<th>type</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>clay</td>
<td>0.165</td>
</tr>
<tr>
<td>silt</td>
<td>0.172</td>
</tr>
<tr>
<td>sand</td>
<td>0.665</td>
</tr>
<tr>
<td>organic matter</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Index of specific surface = 48.99 m²/g of total content
Enrichment ratio of specific surface = 1.06

You can also view and save the WEPP model output in a PDF file.

Summary as PDF File

Statements and Disclaimers | Privacy Policy | Contact Information
8. (Optional) Change subcatchment, channel, or impoundment properties

To modify the landuse or soil for a subcatchment click the Change properties of hillslope link.
Change Subcatchment

The location clicked was: 31.746854158955166; -83.73332976129305 this represents Hillslope [102] in the watershed.

Nearest station: TIFTON 2 N GA 21.9 miles (GA098703)

Change Hillslope Properties

This will change the landuse or soil in the selected subcatchment to be all the same type. This will override properties only for the selected subcatchment.

Current Landuse: Evergreen Forest [GeoWEPP/Tree-20 yr old forest.rot] (class: 42)

Current Soil: Tifton loamy sand, 2 to 5 percent slopes

New Landuse: Cultivated Cropland [GeoWEPP-com.soybean-fall mulch till.rot]

New Soil: Tifton loamy sand, 2 to 5 percent slopes

If there is no landuse class that matches what the subcatchment represents a new landuse class can be created. For example, the USGS only specifies an Cultivated Cropland landuse so all agricultural land is associated with one WEPP input file. A new class such as "Crops - Winter Wheat" can be setup that will be associated with a different WEPP management file. A subcatchment's landuse can then be changed to the new landuse type.

Add New Landuse Type
Change Subcatchment Landuse Class

All landuse for subcatchment 102 has been changed to Cultivated Crops.

Review Watershed

On the next season after selecting a new landuse for the subcatchment click the 'Review Watershed' link.

Change Subcatchment

The location clicked was: 31.747146113681087,-83.73315809991674 this represents Hillslope [102] in the watershed.

Nearest station: TIFTON 2 N GA 21.9 miles (GA098703)

Change Hillslope Properties

This will change the landuse or soil in the selected subcatchment to be all the same type. This will override the NLCD and SSURGO layer properties only for the selected subcatchment.

Current Landuse: Cultivated Crops [GeoWEPP/corn,soybean-fall mulch till.rot] (class: 82)
Current Soil: Tifton loamy sand, 2 to 5 percent slopes

New Landuse: [Cultivated Crops [GeoWEPP/corn,soybean-fall mulch till.rot]]
New Soil: [Tifton loamy sand, 2 to 5 percent slopes]

Add New Landuse Type

A new landuse can also be defined. This might occur if there are several different kinds of crops in the watershed.
Add New Landuse Class

Landuse Class: follow WEPP Management: follow tilted

Submit reset

Close Window

Statements and Disclaimers Privacy Policy Contact Information

After clicking the Add New Landuse button type in a name for the landuse class and select a WEPP management input that will

Finally, click the Submit button.

Add New Landuse Class

Landuse class follow added. File: follow_tilled.rot Close Window

This is the screen that is shown after adding a new landuse class.
WEPP Watershed
Online GIS Interface

Change Subcatchment

The location clicked was: 31.7460512778711658, -83.735046375068245 this represents Hillslope [102] in the watershed.

Nearest station: TIFTON 2 N GA 21.9 miles (GA098703)

Change Hillslope Properties

This will change the landuse or soil in the selected subcatchment to be all the same type. This will override the NLCD and SSURGO layer properties only for the selected subcatchment.

Current Landuse: Cultivated Crops [GeoWEPP/corn,soybean-fall mulch till.root] (class: 82)
Current Soil: Tifton loamy sand, 2 to 5 percent slopes

New Landuse: Fallow [fallow/till/root]
New Soil: Tifton loamy sand, 2 to 5 percent slopes

Submit Cancel

If there is no landuse class that matches what the subcatchment represents a new landuse class can be created. For example, the USGS only specifies an Cultivated Crops landuse so all agricultural land is associated with one WEPP input file. A new class such as "Crops - Winter Wheat" can be setup that will be associated with a different WEPP management file. A subcatchment's landuse can then be changed to the new landuse type.

Add New Landuse Type

Statements and Disclaimers Privacy Policy Contact Information
Change Channel Properties

The location clicked was: 31.742474727605397,-83.73693465020907 this represents Channel [74] in the watershed.

Nearest station: TIFTON 2 N GA 21.9 miles (GA098703) Channel ID: 74
This will change the channel properties for the selected channel.

Current Channel Properties: Rock Channel

Current Soil: Alapaha loamy sand

Current Width: 1.0 (meters)

New Channel Parameters: Rock Channel

New Soil: Alapaha loamy sand

New Width: 1.0

Submit | Cancel
9. Saving a WEPP Watershed Run

To save the WEPP simulation click on the ‘Save Watershed Project’ link on the map page. This will display a window similar to the following:

Select the text between the two lines and hit ctrl-c to copy the information. Next, paste the text into Notepad or Wordpad and save the file. This text can then be used to load the project at a later time.
10. Loading a Saved Watershed Project

Clicking on the ‘Projects’ tab on the main map window there are two options:

1. Load a Project – This uses the extent and outlet to recreate the channel network and watershed delineation. The user can make changes to the channel delineation or outlet point.
2. Load a Project Archive – This restores all files from the saved run, no changes can be made to the channel delineation and watershed subcatchments.

Load a Project

Paste in the information when the project was saved:

And then click the submit button. This will recreate the channel delineation and watershed subcatchments. The next step is the ‘Review Watershed‘ which will process the land use and retrieve any SSURGO soils for the area.
Load a Project Archive

The ‘Load a Project’ archive option goes further and also applies any user customizations that were done to the original watershed. The information pasted into the load project archive window is the same as above, expect that the zip file archive is processed:

After clicking the submit button the following window will be displayed:
After all the files are restored the following window will be displayed:

The main map window is then displayed, showing the output from the run that was saved:

Not all the output files are saved so the WEPP files should be re-run by clicking on the ‘Run WEPP’ button.
11. Download WEPP project for other uses

Download WEPP Watershed Project

Project packaged for download to WEPP Windows.

Click here to download the WEPP Project.

Unzip the project and copy the soil files (*.soil) to the soil subdirectory in WEPP Windows - this is normally:

\c:\program files\usda-ara\wepp\data\soils

Next copy the climate file (wepp.cl) to the climate subdirectory - this is normally:

\c:\program files\usda-ara\wepp\data\climates\cligen

Finally copy the watershed project file to:

\c:\program files\usda-ara\wepp\data\projects

There are some GIS related files that can be used in GeoWEPP but this requires more work:

- soilsmap.asc - SSURGO soil ids
- landuse.asc - Landcover ids
- utmslice.asc - 30m DEM

Statements and Disclaimers | Privacy Policy | Contact Information